Single shot three‐dimensional pulse sequence for hyperpolarized 13C MRI
نویسندگان
چکیده
PURPOSE Metabolic imaging with hyperpolarized 13 C-labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single-shot three-dimensional (3D) imaging sequence and demonstrate its capability to generate 13 C MR images in tumor-bearing mice injected with hyperpolarized [1-13 C]pyruvate. METHODS The pulse sequence acquires a stack-of-spirals at two spin echoes after a single excitation pulse and encodes the kz-dimension in an interleaved manner to enhance robustness to B0 inhomogeneity. Spectral-spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13 C-labeled metabolites. RESULTS A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm3 × 2 s was achieved in tumor images of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate acquired in vivo. Higher resolution in the z-direction, with a different k-space trajectory, was demonstrated in measurements on a thermally polarized [1-13 C]lactate phantom. CONCLUSION The pulse sequence is capable of imaging hyperpolarized 13 C-labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740-752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
منابع مشابه
In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding.
Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized (13)C MRI, including CSI with a ce...
متن کاملFast metabolic imaging of systems with sparse spectra: application for hyperpolarized 13C imaging.
A fast spiral chemical shift imaging (spCSI) sequence was developed for application to hyperpolarized (13)C imaging. The sequence exploits sparse spectra, which can occur in such applications, and prior knowledge of resonance frequencies to reduce the measurement time by undersampling the data in the spectral domain. As a consequence, multiple reconstructions of a given data set have to be comp...
متن کاملOff-resonance behaviour of RARE and TrueFISP in imaging of hyperpolarized 13C
Introduction: Imaging of hyperpolarized C has recently gained interest for metabolic imaging [1]. In comparison with H imaging, the signal of hyperpolarized substances cannot build up a steady state during an imaging sequence as it decays irreversible to the thermal equilibrium value. Therefore, TrueFISP (FIESTA, balanced SSFP, b-FFE) and single-shot RARE (TSE, FSE) show comparable signal behav...
متن کاملSaturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation.
Within the last decade hyperpolarized [1-13C] pyruvate chemical-shift imaging has demonstrated impressive potential for metabolic MR imaging for a wide range of applications in oncology, cardiology, and neurology. In this work, a highly efficient pulse sequence is described for time-resolved, multislice chemical shift imaging of the injected substrate and obtained downstream metabolites. Using ...
متن کاملImaging with referenceless distortion correction and flexible regions of interest using single-shot biaxial spatiotemporally encoded MRI
Owing to its intrinsic characteristics, spatiotemporally encoded (SPEN) imaging is less sensitive to adverse effects due to field inhomogeneity in comparison with echo planar imaging, a feature highly desired for functional, diffusion, and real-time MRI. However, the quality of images obtained with SPEN MRI is still degraded by geometric distortions when field inhomogeneity exists. In this stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 77 شماره
صفحات -
تاریخ انتشار 2017